Safety and Congestion Scores of Selected First/Last Mile Freight Connectors in Tennessee

Deo Chimba, PhD., P.E., PTOE Professor

Department of Civil \& Architectural Engineering
Tennessee State University
PHONE: 615-963-5430 dchimba@tnstate.edu

Hellen Shita

Graduate Research Assistant Tennessee State University hshita@tnstate.edu

FREIGHT INTERMODAL CONNECTORS (FICs)

\square FICs which are also known as "First mile/last mile roadways" are connector facilities that link freightintensive land uses to main freight routes.
\square They are generally the shortest portion of a freight trip; however, often times they are the most difficult to complete.
\square According to TDOT, First-mile, last-mile connections, especially in well-populated urban areas, may experience issues such as traffic congestion, safety, freight-incompatible roadway geometry, and configurations resulting in delays to moving freight.

National Highway System, Intermodal Connectors, and Principal Arterials: 2018

KEY: NHS = National Highway System or the interstate highway system; STRAHNET = Strategic Highway Network or a network of highways that are important to the U.S. strategic defense policy. MAP-2I principal arterials = those rural and urban roads serving major population centers not already categorized above.
SOURCE: U.S. Department of Transportation (USDOT), Federal Highway Administration, Highway Performance Monitoring System, as cited in USDOT, Bureau of Transportation Statistics, National Transportation Atlas Database, available at www.bts.gov as of September 2018.

Bureau of Transportation Statistics

Freight Facts and Figures
Previous Editions

Freight Intermodal Connectors on the National Highway System by State
\qquad

	Port terminal	Truck/rail facility	Airport	Truck/pipeline terminal	Grand Total
New York	8	16	17	0	41
Michigan	15	8	11	0	34
Washington	11	6	14	0	31
Georgia	5	13	4	7	29
Wisconsin	19	4	5	0	28
Massachusetts	5	10	12	0	27
Mississippi	22	2	3	0	27
Oregon	15	5	6	1	27
Pennsylvania	8	8	5	4	25
Louisiana	8	5	8	0	21
North Carolina	2	4	9	5	20
Tennessee	5	8	4	2	19
Kentucky	4	7	3	3	17
Arkansas	3	7	3	3	16
Missouri	4	8	4	0	16
Virginia	6	3	7	0	16
Alaska	8	0	7	0	15
Colorado	0	5	6	4	15

Source: U.S. Department of Transportation, Federal Highway Administration, Office of Planning, Environment, and Realty, Intermodal Connectors, available at https///www.fhwa.dotgov/planning/national highway system/intermodal connectors/ as of February 2020.

TENNESSEE

 FICs| County | Airport | Intercity
 Bus
 Terminal | Port Terminal | Truck/ Pipeline Terminal | Truck/
 Rail
 Facility | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Davidson | 0 | 1 | 0 | 0 | 1 | 2 |
| Hamilton | 1 | 1 | 4 | 1 | 0 | 7 |
| Knox | 0 | 1 | 0 | 1 | 0 | 2 |
| Shelby | 2 | 1 | 1 | 0 | 6 | 10 |
| Sullivan | 1 | 0 | 0 | 0 | 1 | 2 |
| Total | 4 | 4 | 5 | 2 | 8 | 23 |

Facility Type	Type	No.	Connector Description	Miles	Id
Chattanooga Metropolitan Airport	Airport	1	Shepherd Road (Airport Connector) Between SR-153 And Airport Road	0.7	TN2A
Colonial \& Plantation Pipeline Co. - Knx	Truck/Pipeline Terminal	1	Middlebrook Pike (SR-169), Ed Shouse Drive, Western Ave From Terminal Entrance To I-75	1.3	TN11L
Colonial Pipeline Chattanooga	Truck/Pipeline Terminal	1	Jersey Pike From Enterprise Park Drive To SR-153	0.5	TN1L
CSX Corporation Kingsport	Truck/Rail Facility	1	LincOln Street From John B. Dennis Highway (SR-93) To Facility Entrance	0.8	TN10R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	1	Southern Avenue From Lamar Ave. (SR-4) To East Parkway (SR-277)	0.8	TN13R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	2	East Parkway (SR-277) From Lamar Ave. (SR-4) To Southern Avenue	0.8	TN13R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	3	Spottswood Avenue From Airways (SR-277) To Forrest Yard	0.3	TN13R
Greyhound Bus Terminal - Chattanooga	Intercity Bus Terminal	1	West 4th Street And Chestnut Street From I124 To West 5th Street	0.3	TN8B
Greyhound Bus Terminal - Knoxville	Intercity Bus Terminal	1	Cherry Street And Magnolia Avenue (SR-1) From I-40 To Central Street	2.3	TN12B
Greyhound Bus Terminal - Memphis	Intercity Bus Terminal	1	Union Avenue (SR-3) Between Danny Thomas Blvd (SR-1) And 4th Street	0.2	TN20B
Greyhound Bus Transp Center - Nashville	Intercity Bus Terminal	1	Demonbreun Between l-40 And 8th Avenue South (SR-1)	0.4	TN21B
J.I.T. Terminals Chattanooga	Port Terminal	1	Manufactures Road From SR-29 To Terminal Entrance	0.2	TN4P
Johnston Yards - Memphis Illinois Centra	Truck/Rail Facility	1	Mallory Avenue And Riverport Road Between I-55 And Rail Yard	1.5	TN19R
Leewood Yards Memphis CSX	Truck/Rail Facility	1	Jackson Avenue (SR-14) And Chelsea Avenue Between I-40 And Warford Street	2.5	TN17R
Memphis International Airport	Airport	1	Tchulahoma And Democrat Rd Between Lamar Ave (SR-4) And Airways Blvd	2.4	TN15A
Memphis International Airport	Airport	2	Plough Blvd Between l-240 And The Airport Entrance	2	TN15A
Mid-South Terminals	Port Terminal	1	Hudson Rd. To Pineville Rd. To Moccasin Bend Rd. To Hamm Rd. To S. R. 29	2.8	TN3P
President's Island Memphis	Port Terminal	1	Mclemore Av, Riverside Blvd, Jack Carley Causeway, Harbor Av, Channel Av, Jetty St Btw I-55 \& Port	5.3	TN14P
$\begin{aligned} & \text { Radnor Yards - Nashville } \\ & \text { CSX } \\ & \hline \end{aligned}$	Truck/Rail Facility	1	Armory Ave And Sidco Drive Between l-65 And Harding Place (SR-255)	2	TN22R
Southern Foundry Supply - Chattanooga	Port Terminal	1	West 19th Street From Riverfront Parkway (SR-58) To The Port Entrance	0.3	TN6P
Tennessee Yards Memphis Burlington Nor	Truck/Rail Facility	1	Shelby Drive Between Lamar Avenue (SR-4) And The Tennessee Yard	0.6	TN18R
Tri-Cities Regional Airport - Kingsport	Airport	1	Airport Access Road (SR-357) From I-81 To Airport Entrance	3.1	TN9A
Vulcan Materials Company -Chattanooga	Port Terminal	1	River Street From Evans Street To Riverfront Parkway (SR-58)	0.1	TN5P
Total				31.2	

STUDY OBJECTIVE

Study performed multimodal

 inventory check and evaluate some of critical freight connectors in Tennessee by identifying improvement needsDSafety Needs
-Congestion/capacity Needs
\square environmental (Air Pollution) Needs

FICs MOE's Evaluation

\square FICs was assigned a score on congestion/capacity, safety, risk, and emission basis, relying on what is known about the issues from the field review, data review, simulation, and stakeholders' input etc.
\square The scores for each measure for each connector is ranked in order according to the score.
\square The following measures were used to evaluate the FICs:
$>$ Safety Score: Crash frequency, crash rates, injury severity levels, collision patterns, etc
>Safety Economic Risk Score: Risk impact and likelihood.
$>$ Congestion/Capacity Score: FICs congestion levels such as flow, speed, travel time \& queuing.
> Emission Score

SAFETY

 EVALUATION
Crash Data

\square Three years of crash data (2012-2015) along each of the connectors was downloaded from the Tennessee Roadway Information Management System (eTRIMS) database.
\square Each crash is embedded with attributes such as county name, roadway ID, the roadway log mile in which crash occurred, injury severity (type of crash), total killed and injured, first harmful event, roadway location, pavement condition, manner of collision, year of crash, time of crash, lighting condition, weather condition, relation to junction, and urban or rural classification among others.
\square The attributes such as log mile, county and roadway ID were used to merge each crash with information such as traffic volume and roadway geometry.

Traffic Characteristics and Geometric Data

\square The average annual daily traffic (AADT) for three years (2012 to 2014) was gathered through eTRIMS and TDOT traffic history website.
\square Included in the traffic data are AADT, percentage of passenger cars and trucks (single and multi-units), peak hour volume percentage, and directional splits.
\square Geometric data was downloaded from eTRIMS database that provide information such as terrain, land use, number of lanes, travel way width, posted speed limit, illumination, access control class, one-way or two way street information, and roadside features.
\square Maintenance features in eTRIMS provided median type and width among others for each connector.
\square Google Earth was used for the verification of downloaded geometric data as well as for gathering the information not found in eTRIMS.

Identification of FICs Safety Deficiencies

OCrash analysis along the study FICs
Ildentification of injury severity patterns
aldentification of collision patterns
DIdentification of crash contributing causes
Dldentification of first harmful events
DIdentification of crash locations (segment, intersections, ramps etc)
Dldentification of crashes in relation to time of the day, day of the week

Safety Analvsis

\square The number of crashes for all roadway segments were tabulated with the highest number of crashes being along Jackson Ave (SR-14) in Memphis. Jackson Ave and Chelsea Ave roadway segments connect Leewood yards a truck/rail facility from l-40.
\square The second and third connector segments with highest number of crashes are also from facilities in Memphis, which are Democrat Rd and Shelby Dr respectively.
[However, E. Magnolia Ave segment in Knoxville has the highest number of fatal and incapacitating injury crashes combined

Facility Type	Type	No.	Connector Description	Miles	Id
Chattanooga Metropolitan Airport	Airport	1	Shepherd Road (Airport Connector) Between SR-153 And Airport Road	0.7	TN2A
Colonial \& Plantation Pipeline Co. - Knx	Truck/Pipeline Terminal	1	Middlebrook Pike (SR-169), Ed Shouse Drive, Western Ave From Terminal Entrance To I-75	1.3	TN11L
Colonial Pipeline Chattanooga	Truck/Pipeline Terminal	1	Jersey Pike From Enterprise Park Drive To SR-153	0.5	TN1L
CSX Corporation Kingsport	Truck/Rail Facility	1	LincOln Street From John B. Dennis Highway (SR-93) To Facility Entrance	0.8	TN10R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	1	Southern Avenue From Lamar Ave. (SR-4) To East Parkway (SR-277)	0.8	TN13R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	2	East Parkway (SR-277) From Lamar Ave. (SR-4) To Southern Avenue	0.8	TN13R
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	3	Spottswood Avenue From Airways (SR-277) To Forrest Yard	0.3	TN13R
Greyhound Bus Terminal - Chattanooda	Intercity Bus Terminal	1	West 4th Street And Chestnut Street From I124 To West 5th Street	0.3	TN8B
Greyhound Bus Terminal - Knoxville	Intercity Bus Terminal	1	Cherry Street And Magnolia Avenue (SR-1) From I-40 To Central Street	2.3	TN12B
Greyhound Bus Terminal - Memphis	Intercity Bus Terminal	1	Union Avenue (SR-3) Between Danny Thomas Blvd (SR-1) And 4th Street	0.2	TN20B
Greyhound Bus Transp Center - Nashville	Intercity Bus Terminal	1	Demonbreun Between I-40 And 8th Avenue South (SR-1)	0.4	TN21B
J.I.T. Terminals Chattanooga	Port Terminal	1	Manufactures Road From SR-29 To Terminal Entrance	0.2	TN4P
Johnston Yards - Memphis Illinois Centra	Truck/Rail Facility	1	Mallory Avenue And Riverport Road Between I-55 And Rail Yard	1.5	TN19R
Leewood Yards Memohis CsX	Iruck/Rall Facility	1	Jackson Avenue (SR-14) And Cnelsea Avenue Between 1-40 And Warford Street	2.5	TN17R
Memphis International Airport	Airport	1	Tchulahoma And Democrat Rd Between Lamar Ave (SR-4) And Airways Blvd	2.4	TN15A
Memphis International Airport	Airport	2	Plough Blvd Between I-240 And The Airport Entrance	2	TN15A
Mid-South Terminals	Port Terminal	1	Hudson Rd. To Pineville Rd. To Moccasin Bend Rd. To Hamm Rd. To S. R. 29	2.8	TN3P
President's Island Memphis	Port Terminal	1	Mclemore Av, Riverside Blvd, Jack Carley Causeway, Harbor Av, Channel Av, Jetty St Btw I-55 \& Port	5.3	TN14P
$\begin{aligned} & \text { Radnor Yards - Nashville } \\ & \text { CSX } \end{aligned}$	Truck/Rail Facility	1	Armory Ave And Sidco Drive Between I-65 And Harding Place (SR-255)	2	TN22R
Southern Foundry Supply - Chattanooga	Port Terminal	1	West 19th Street From Riverfront Parkway (SR-58) To The Port Entrance	0.3	TN6P
Tennessee Yards Memphis Burlington Nor	Truck/Rail Facility	1	Shelby Drive Between Lamar Avenue (SR-4) And The Tennessee Yard	0.6	TN18R
Tri-Cities Regional Airport - Kingsport	Airport	1	Airport Access Road (SR-357) From I-81 To Airport Entrance	3.1	TN9A
Vulcan Materials Company -Chattanooga	Port Terminal	1	River Street From Evans Street To Riverfront Parkway (SR-58)	0.1	TN5P
Total				31.2	

Connectors/Segments
 Ranked based on Number of Crashes and Crash Rates

Segments Ranked by Number of Crashes

Connector Segment				Leng		AADT	Fatal	Incap.	Non Incap	PDO	Crashes
Jackson Ave-Rail-Shelby				1.55		24343	0	2	83	179	264
Democrat Rd-Airport-Shelby				2.45		14595	0	3	46	143	192
Shelby Dr-Rail-Shelby				0.63		25365	1	1	33	130	165
Plough Blvd-Airport-Shelby				1.78		34315	1	0	34	116	151
East Parkway S -Airways Blvd-Rail-Shelby				0.7		21848	2	0	45	92	139
Western Ave-Pipeline-Knox				0.17		42871	0	1	12	104	117
E. Magnolia Ave-Intercity Bus terminal-Knox				1.53		11443	0	10	24	64	98
Tchulahoma-Airport-Shelby				0.63		20218	0	1	17	54	72
N. Cherry St-Intercity bus terminal-Knox				0.49		13984	0	3	12	45	60
Jersey Pike-Pipeline-Hamilton				0.59		11102	0	0	17	41	58
Middlebrook Pike-Pipeline-Knox				0.50		23665	1	2	10	42	55
Manufactures Rd-Port-Hamilton				0.15		12504	0	1	5	48	54
S. 3rd St-Rail-Shelby				0.53		27448	0	1	16	36	53
Mallory Ave-Rail-Shelby				1.13		6747	0	1	17	30	48
Sidco Dr (4161) -Rail-Davidson				0.92		10707	0	1	11	34	46
Airways Blvd				0.24		49655		0	10	30	41
Chelsea Ave-Rail-Shelby				1.31		5600	0	0	18	23	41
Shepherd Rd-Airport-Hamilton				0.73		12352	0	1	6	28	38
Airport Access Rd-Airport-Sullivan				2.44		8450	1	2	10	24	37
Airport Rd-Hamilton				0.86		5314	0	1	7	27	35
Harbor Ave-Port-Shelby				2.85		7861	0	1	11	23	35
Ed shouce Dr -Pipeline-Knox				0.53		22954	0	1	3	25	29
Armory Ave(4162)-Rail-Davidson				0.17		7191	0	0	4	18	22
Jack carley Causeway-Port-Shelby				1.08		12941	0	3	7	12	22
Channel Ave-Port-Shelby				3.02		4865	0	0	5	14	19
Riverport Rd-Rail-Shelby				1.03		8514	0	0	4	14	18
Southern Ave-Rail-Shelby				0.92		8410	0	1	1	14	16
Armorv Ave (4888)-Rail-Davidson				0.34		17955	0	0	3	12	15
	Length	AADT	Fatal	Incap.			Non Incap		PDO	Crashes	
	1.55	24343	0			2	8		179		264
	2.45	14595	0			3	46		143		192
	0.63	25365	1			1	3		130		165
	1.78	34315	1			0	3		116		151
	0.7	21848	2			0	4		92		139
	0.174	42871	0			1	12	2	104		117
nox	1.532	11443	0			0	2		64		98
	0.63	20218	0			1	17		54		72
	0.49	13984	0			3	12	2	45		60
	0.59	11102	0			0	17		41		58

Segments
 Ranked
 by Crash
 Rates

Crash Rate $=\frac{\text { Five Years Number of Crashes } * 1,000,000}{365 * \text { AADT } * \text { Connector Length (miles) } * \text { Five Years }}$

Connector Segment	Fatal \& Injury crash rate	Total crash rate	Total Crash rate (No Ramp Related)	Total Crash rate (Ramp Related Only)
Armory Ave (4162)-Rail-Davidson	2.99	16.44	10.46	5.98
Western Ave-Pipeline-Knox	1.59	14.32	8.32	6
Riverside Blvd-Port-Shelby	0	11.52	11.52	0
Shellby Dr-Rail-Shelby	2	9.43	9.43	0
East Parkway S -Airways Blvd-Rail-Shelby	2.81	8.3	8.3	0
Jersey Pike-Pipeline-Hamilton	2.37	8.09	5.86	2.23
N. Cherry St-Intercity bus terminal-Knox	2	8	6	2
Moccasin bend Rd-Port-Hamilton	1.21	7.28	7.28	0
Airport-Hamilton	1.6	6.99	6.99	0
Jackson Ave-Rail-Shelby	2.06	6.39	6.27	0.12
Democrat Rd-Airport-Shelby	1.61	6.29	5.96	0.33
Manufactures Rd-Port-Hamilton	0.67	6.07	4.83	1.24
Mclemore Ave-Port-Shelby	0.64	5.77	3.85	1.92
Mallory Ave-Rail-Shelby	2.16	5.75	5.51	0.24
Tchulahoma-Airport-Shelby	1.29	5.16	5.16	0
E. magnolia Ave-Intercity bus terminal-Knox	1.77	5.11	5.11	0
Chelsea Ave-Rail-Shelby	2.24	5.1	5.1	0
Sidco Dr (4161) -Rail-Davidson	1.11	4.26	4.26	0
Middlebrook Pike-Pipeline-Knox	0.99	4.19	4.19	0
Spottswood Ave-South Pkwy E - Rail-Shelby	1.53	4.09	4.09	0
Shepherd Rd-Airport-Hamilton	0.85	3.6	2.46	1.14
S. 3rd St-Rail-Shelby	1.07	3.33	3.14	0.19
Airways Blvd	0.84	3.14	3.14	0
New horn lake Rd-Florida St-Rail-Shelby	0	3.12	3.12	0
Plough Blvd-Airport-Shelby	0.64	2.77	2.26	0.51
Armory Ave (4888) -Rail-Davidson	0.45	2.24	1.94	0.3
Ed shouce Dr -Pipeline-Knox	0.3	2.18	2.18	0
Old Magnolia Ave-Intercity bus terminal-Knox	0	2.16	2.16	0
Pineville Rd-Port-Hamilton	0.51	2.04	2.04	0
Southern Ave-Rail-Shelby	0.24	1.89	1.89	0
Riverport Rd-Rail-Shelby	0.42	1.87	1.87	0
Airport Access Rd-Airport-Sullivan	0.58	1.64	1.46	0.18
Hamm Rd-Port-Hamilton	0	1.53	1.53	0
S. Hall of Fame Dr-Intercity Bus Terminal-Knox	0	1.52	1.52	0
Winchester Rd.	0.4	1.49	1.39	0.1
Jack carley Causeway-Port-Shelby	0.65	1.44	1.44	0
Harbor Ave-Port-Shelby	0.49	1.42	1.42	0
Channel Ave-Port-Shelby	0.31	1.18	1.18	0
Sidco Dr (4889) -Rail-Davidson	0.17	1.04	1.04	0
Randy Tyree St-Pipeline-Knox	0	1.02	1.02	0
Lincoln St-Rail-Sullivan	0.11	0.67	0.67	0
Hall of Fame Dr-Intercity bus terminal-Knox	0	0	0	0
Hudson Rd-Port-Hamilton	0	0	0	0
Pier St-port-Shelby	0	0	0	0
River St-Port-Hamilton	0	0	0	0
West 19 ${ }^{\text {th }}$ St-Port-Hamilton	0	0	0	0

Connectors/Segments

 Ranked based on whether Actual Crash Rates exceed Critical Crash Rates
Ranking Connector Segment by Critical Crash rate

\square The Critical Crash Rate criteria are detailed in the Highway Safety Manual (2010 HSM) Chapter 4 section 4.4.2.5.
\square The critical rate method utilizes a statistical test to determine whether the accident rate at a particular connector segment is significantly higher than TDOT provided average rate for similar type of functional class segment

Connector Segments Exceeding Critical Total Crash rate

Connector Segment	Actual Total Crash Rate	Critical Total Crash Rate
Armory Ave (4162)-Davidson	16.44	6.18
WesternAve-Knox	14.32	4.15
Riverside Blvd-Shelby	11.52	8.61
Shelby Dr-Shelby	9.43	4.07
East Parkway S -Shelby	8.30	4.09
Jersey Pike-Hamilton	8.09	4.93
N.Cherry St-Knox	8.00	4.20
Airport Rd-Hamilton	6.99	4.76
Jackson Ave-Shelby	6.39	3.76
Democrat Rd-Shelby	6.29	3.86
Manufactures Rd-Hamilton	6.07	4.09
Mallory Ave-Shelby	5.75	4.37
Tchulahoma/American Way-Shelby	5.16	4.18
E.Magnolia Ave-Knox	5.11	4.03
Middlebrook Pike-Knox	4.19	3.88

Facility Type	Type	No.	Connector Description	Miles
Chattanooga Metropolitan Airport	Airport	1	Shepherd Road (Airport Connector) Between SR-153 And Airport Road	0.7
Colonial \& Plantation Pipeline Co. - Knx	Truck/Pipeline Terminal	1	Middlebrook Pike (SR-169), Ed Shouse Drive, Western Ave From Terminal Entrance To I-75	1.3
Colonial Pipeline Chattanooga	Truck/Pipeline Terminal	1	Jersey Pike From Enterprise Park Drive To SR-153	0.5
CSX Corporation Kingsport	Truck/Rail Facility	1	LincOln Street From John B. Dennis Highway (SR-93) To Facility Entrance	0.8
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	1	Southern Avenue From Lamar Ave. (SR-4) To East Parkway (SR-277)	0.8
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	2	East Parkway (SR-277) From Lamar Ave. (SR-4) To Southern Avenue	0.8
Forrest Yards - Memphis Norfolk Southern	Truck/Rail Facility	3	Spottswood Avenue From Airways (SR-277) To Forrest Yard	0.3
Greyhound Bus Terminal - Chattanooga	Intercity Bus Terminal	1	West 4th Street And Chestnut Street From I124 To West 5th Street	0.3
Greyhound Bus Terminal - Knoxville	Intercity Bus Terminal	1	Cherry Street And Magnolia Avenue (SR-1) From I-40 To Central Street	2.3
Greyhound Bus Terminal - Memphis	Intercity Bus Terminal	1	Union Avenue (SR-3) Between Danny Thomas Blvd (SR-1) And 4th Street	0.2
Greyhound Bus Transp Center - Nashville	Intercity Bus Terminal	1	Demonbreun Between I-40 And 8th Avenue South (SR-1)	0.4
J.I.T. Terminals Chattanooga	Port Terminal	1	Manufactures Road From SR-29 To Terminal Entrance	0.2
Johnston Yards Memphis Illinois Centra	Truck/Rail Facility	1	Mallory Avenue And Riverport Road Between I-55 And Rail Yard	1.5
Leewood Yards - Memphis CSX	Truck/Rail Facility	1	Jackson Avenue (SR-14) And Chelsea Avenue Between I-40 And Warford Street	2.5
Memphis International Airport	Airport	1	Tchulahoma And Democrat Rd Between Lamar Ave (SR-4) And Airways Blvd	2.4
Memphis International Airport	Airport	2	Plough Blvd Between I-240 And The Airport Entrance	2
Mid-South Terminals	Port Terminal	1	Hudson Rd. To Pineville Rd. To Moccasin Bend Rd. To Hamm Rd. To S. R. 29	2.8
President's Island Memphis	Port Terminal	1	Mclemore Av, Riverside Blvd, Jack Carley Causeway, Harbor Av, Channel Av, Jetty St Btw I-55 \& Port	5.3
$\begin{aligned} & \text { Radnor Yards - Nashville } \\ & \text { CSX } \end{aligned}$	Truck/Rail Facility	1	Armory Ave And Sidco Drive Between l-65 And Harding Place (SR-255)	2
Southern Foundry Supply - Chattanooga	Port Terminal	1	West 19th Street From Riverfront Parkway (SR-58) To The Port Entrance	0.3
Tennessee Yards Memphis Burlington Nor	Truck/Rail Facility	1	Shelby Drive Between Lamar Avenue (SR-4) And The Tennessee Yard	0.6
Tri-Cities Regional Airport - Kingsport	Airport	1	Airport Access Road (SR-357) From I-81 To Airport Entrance	3.1
Vulcan Materials Company -Chattanooga	Port Terminal	1	River Street From Evans Street To Riverfront Parkway (SR-58)	0.1
Total				31.2

Crash Rates for Airport Connectors

EVALUATING ROADWAY

$$
\begin{gathered}
\text { FEATURES AND } \\
\text { TRAFFIC }
\end{gathered}
$$

CHARACTERISTICS IMPACTING CRASHES ALONG FICs

Modeling Crashes along the FICs

\square The impact of roadway cross sectional features and traffic characteristics to the crash frequency along the FICs connectors were evaluated through statistical modeling.
The primary objective was to evaluate the impact of different variables to crash frequency.
The frequency here is defined as the number of crashes per segment for the three years of the study data.
0 Only segments longer than 0.1 miles were used in the model.
\square The research evaluated the impact of access density, signal density, percentage of trucks, presence or absence of TWLTL, presence or absence of median and other variables to the safety along the FICs.
In addition to these geometric features, the study evaluated the impact of number of lanes, shoulder width, median width and traffic characteristics (traffic volume and posted speed limits) to the safety of the connectors.
The Crash Frequency along the FICs connectors was analyzed and fitted using two count data models, Poisson and Negative Binomial (NB).

NB MODELING APPROACH

 $>$ Negative Binomial (NB) model is expressed as:$$
p(y)=\frac{\Gamma\left(y+\alpha^{-1}\right)}{\left.\Gamma\left(\alpha^{-1}\right)\right) \Gamma(y+1)}\left(\frac{1}{1+\alpha \mu}\right)^{1 / \alpha}\left(\frac{\alpha \mu}{1+\alpha \mu}\right)^{y}
$$

Where the mean $\mu=E(y)=\exp (X \beta)$

The variance $\operatorname{Var}(y)=\mu+a u^{2}$
Overdispersion Factor

$$
E(y)=\mu=e^{\left(\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{2} x_{3}+\cdots+\beta_{n} x_{n}\right)}
$$

General Form of the Crash Model

 $Y_{i}=e^{\Sigma X_{i} \beta}$ $Y_{i}=e^{\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{5} x_{5} \ldots+\beta_{n} x_{n}}$$\checkmark \mathrm{Y}_{\mathrm{i}}=\mathrm{a}$ random variable representing number of crashes per year per FICs segment
$\checkmark \mathbf{X}_{\mathrm{i}}=$ variable which is related to the occurrence of crash
$\checkmark \beta=$ the coefficient of the corresponding variables

Poisson vs. Negative Binomial

	Mean	Variance (Stdev)
Total Crash Frequency	16.31	$910(30.17)$
Fatal and Injury Crashes Frequency	4.282	$75(8.66)$

> Therefore the NB was used for Crash frequency Modeling.
> Negative binomial (NB) model estimation was performed based on the Maximum Likelihood Estimation (MLE) criterion using STATA software.

FREQUENCY MODELING VARIABLES ALONG THE FICs

\square Traffic Volume—AADT
Truck Volume
Number of Lanes

- Median Width
\square Inside Shoulder Width
\square Signalized Intersections Density
\square Access Density
\square Percent Directional traffic volume Split
- Percent of Peak Hour traffic volumes
\square Percentage of Trucks and Passenger Cars
\square Posted Speed Limit
- Terrain

Median Type

- Presence of Absence of Ramp

Presence or Absence of Railroad Crossing

SUMMARY OF SEGMENT VARIABLES

Variable	Mean	Min	Max
AADT	15716	1742	49655
Trucks volume	1536	86	4312
Number of Lanes	4	2	7
Median width (ft)	12.7	0	35
Outside shoulder Width (ft)	3.58	0	16
Signalized Intersection density	0.50	0	3
Access density	7.13	0	67
\% Passenger Cars	89	61	99
\%Peak hour volume	11	9	14
Directional split	64	51	75

SUMMARY OF SEGMENT VARIABLES

Variable	Description	Code for modelling	Count	$\%$
Posted speed-miles	<40	0	68	55
per hour (mph)	$40-55$	1	56	45
Terrain	Flat	0	58	31
	Rolling	1	86	69
Median	Presence	1	54	44
	Absence	0	70	56
Outside shoulder	Presence	1	92	74
	Absence	0	32	26
Two way Left Turn	Presence	1	23	19
Lane (TWLTL)	Absence	0	101	81
Ramp	Presence	1	97	78
	Absence	0	27	22
Railroad crossing	Presence	1	100	87
	Absence	0	16	13

STATA SOFTWARE

nbreg allcrash aadt lanes signallizedintersection accessdensity ramp twltl outshoulder gutter if length>0.1, dispersion(mean) offset(length)
Negative binomial regression
Dispersion $=$ mean
Log likelihood $=-265.02566$

Number of obs	$=$	73
LR chi2 (8)	$=$	60.24
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.1020

| allcrash | Coef. | Std. Err. | z | P>\|z| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| aadt | .0000765 | .0000172 | 4.45 | 0.000 | .0000428 | .0001102 |
| lanes | -.0894368 | .1340945 | -0.67 | 0.505 | -.3522571 | .1733836 |
| signallizedintersection | .2914481 | .1271629 | 2.29 | 0.022 | .0422133 | .5406829 |
| accessdensity | .0444363 | .0166217 | 2.67 | 0.008 | .0118583 | .0770143 |
| ramp | .334966 | .2576693 | 1.30 | 0.194 | -.1700565 | .8399885 |
| twltl | -.9810575 | .2520983 | -3.89 | 0.000 | -1.475161 | -.486954 |
| outshoulder | -.4666318 | .2951406 | -1.58 | 0.114 | -1.045097 | .111833 |
| gutter | .1017663 | .2768933 | 0.37 | 0.713 | -.4409346 | .6444672 |
| _cons | 1.665625 | .4337781 | 3.84 | 0.000 | .8154356 | 2.515815 |
| length | 1 | (offset) | | | | |
| /lnalpha | -.4336502 | .1890003 | | | -.8040839 | -.0632165 |
| alpha | .648139 | .1224984 | | | .4474977 | .9387403 |

Likelihood-ratio test of alpha=0: chibar2(01) $=512.20$ Prob>=chibar2 $=0.000$

NEGATIVE BINOMIAL FREQUENCY MODEL RESULTS

Variables	Coefficient	Z-Statistics	P-value
AADT along Connectors* *	$7.7 \mathrm{E}-05$	4.450	0.000
Signal Density along Connectors *	0.291	2.290	0.022
Access Density along Connectors *	0.044	2.670	0.008
Presence Ramp along Connectors	0.335	1.300	0.194
Presence of Curb and Gutter along Connectors	0.102	0.370	0.713
Presence of Outside Shoulder along Connectors	-0.467	-1.580	0.114
Presence of TWLTL*	-0.981	-3.890	0.000
Number of lanes	-0.089	-0.670	0.505
Constant	1.666	3.840	0.000
Length	Offset		

\square POSITIVE COEFFICIENT-As that independent variable increases, it causes the response variable (in this case Crashes) to increase. The likelihood increases as the measure of that particular variable increases.

- NEGATIVE COEFFICIENT-As that independent variable increases, it causes the response variable (in this case Crashes) to decrease.

FICs OPERATIONS AND CAPACITY ANALYSIS

Operations Analysis

\square Operations Analysis tries to identify deficiencies and issues along selected FICs based on:

- Delay at intersections
- Level of Service (LOS) at Intersections
- Queue storage lengths being exceeded
- Turning radii at intersections
- Access and connectivity
- Bottlenecks
- Travel time reliability

Operations (Capacity) Analysis

- The TMC were collected in July 2017 for twelve hours from 6:00 AM to 6:00 PM
Turning Movement Counts (TMC) collected on 19 selected intersections for.
- 3 Intersections in Knox County
- 9 Intersections in Shelby County
- 1 Intersection in Davidson County
- 2 Intersections in Sullivan County
- 4 intersections in Hamilton County
\square Signal Timing and Phasing data requested and provided by respective jurisdictions.
\square Operational analysis was conducted at these 19 selected intersections.

Data-TMC

			TMC	
S/N	Intersection	County	AM	PM
1	Airways Blvd and Democrat Rd	Shelby	1964	2402
2	Cooper St. and Southern Ave	Shelby	794	1156
3	Lamar Ave and Airways BIvd	Shelby	2922	3934
4	S Pkwy E,Spottwood Ave and E-Pkwy S (SR-277)	Shelby	1856	2489
5	River port Rd and W Mallory Ave	Shelby	1263	1268
6	Chelsea Ave and Watford St	Shelby	671	728
7	Democract Rd, Tchulahoma Rd and American way	Shelby	2284	2514
8	SR-4 (Lamar Ave) and American Way/Tchulahoma	Shelby	3985	4693
9	SR-175 E Shelby Dr and SR-4 (Lamar Ave)	Shelby	3620	3965
10	Manufactures Rd and SR-29 N/Bound on Ramp	Hamilton	1181	1334
11	Airport Connector Rd and SR-153 S/Bound off Ramp	Hamilton	1000	1500
12	Airport Rd, SR-2 and US Hwy 64	Hamilton	1999	2188
13	jersey Pike and SR-317 Bonny Oaks Dr	Hamilton	2238	2747
14	SR-169 Middlebrook Pike and Ed shouse Dr	Knoxville	2566	3014
15	N Cherry St and E Magnolia Ave	Knoxville	1559	2366
16	Hall of Fame Dr and SR-1 E Magnolia Ave	Knoxville	1253	1622
17	12th Ave and Lincoln St	Sullivan	1204	1560

Percentage of Trucks volume to/from the Freight facility

			Percentage of Intersection Trucks volume to/from the
Ineight facility			

Operational Analysis of Intersections

\square Synchro was used for the intersection capacity analysis
\square Analysis followed procedures in Highway Capacity Manual (HCM)

File Edit Transfer Options Optimize Help

Traffic Operations at Critical Intersections

\square Operational analysis was performed with respect to approaches and critical movements at intersections to and from the freight facilities.
\square For AM peak hours, intersection delays were found to vary from 10 seconds to 47 seconds, critical movement delays varied from 13 seconds to 69 seconds while critical approach delays varied from 14 to 66 seconds.
\square Jersey Pike/SR-153 Bonny Oaks Dr, an intersection along pipeline connector in Hamilton County recorded the highest delay (47 seconds)
\square Lincoln Street, an intersection along truck-rail connector segment in Sullivan County had the lowest delay (10 seconds).
\square It was observed that intersection delays varied randomly for different type of connectors without specific pattern related to the type of intermodal connector.

Results-Delay

Signalized Intersection	AM Intersection delay (sec)	PM Intersection delay(sec)
SR-4 Lamar Ave and Tchulahoma Rd/American Way	28.2	42
Jersey Pike and SR-153 Bonny Oaks Dr	47.4	48
SR-175 E Shelby Dr and SR-4 Lamar Ave	44.8	50.3
Airport Rd and SR-02	15.3	19.5
Airport connector Rd and SR-153 S off/on ramp	10.5	14.8
Democrat Rd and Airways BIvd	30.4	77.6
Democract Rd and Tchulahoma Rd/American Way	28.6	41.3
Manufactures Rd and SR-29 N bound off/On Ramp	28.3	41.3
W Mallory Ave and Riverport Rd	23.9	49.7
SR-4 Lamar Ave and Airways Blvd	20.8	33
Chelsea Ave and Watford St	17.9	17.4
SR-169 Middlebrook Pike and Ed shouse Dr	17.1	22
Hall of Fame Dr and SR-1 E Magnolia Ave	10	9.4
Southern Ave and Cooper St	11.9	11.4
East Pkwy S/Airways Blvd and Spottswood Ave/S Pkwy E	10.2	17.7
N Cherry St and E Magnolia Ave	11.5	11.4
12th St and Lincoln St	9.6	7.1

Results-Queue Length

Intersection	AM Critical queue length(ft.)	PM Critical queue length(ft.)
SR-4 Lamar Ave and Tchulahoma Rd/American Way	649	713
Jersey Pike and SR-153 Bonny Oaks Dr	416	589
SR-175 E Shelby Dr and SR-4 Lamar Ave	601	686
Airport Rd, SR-02 and US Hwy 64	283	309
Airport connector Rd and SR-153 S off/on ramp	116	231
Democrat Rd and Airways Blvd	195	459
Democract Rd and Tchulahoma Rd/American Way	388	264
Manufactures Rd and SR-29 N bound off/On Ramp	337	325
SR-4 Lamar Ave and Airways Blvd	197	289
Chelsea Ave and Warford St	68	55
SR-169 Middlebrook Pike and Ed shouse Dr	285	302
Hall of Fame Dr and SR-1 E Magnolia Ave	54	67
N Cherry St and E Magnolia Ave	67	120
Southern Ave and Cooper St	50	58
East Pkwy S/Airways Blvd and Spottswood Ave/S Pkwy E	184	386
N Cherry St and E Magnolia Ave	67	120
12th St and Lincoln St	132	75

FICs Intersections in Shelby

FICs Intersections in Hamilton

FICs Intersections in Knox

TRUCK DRIVER SURVEY ANALYSIS

\square The survey was conducted to evaluate FICs in Tennessee from truck drivers' perspective
\square Targeted 42 freight facilities, and feedback was obtained from 36 drivers.
$\square 18$ multiple choice questions and four free-response questions, and the results obtained were analyzed in MS Excel

Please select the road segment(s) along the FICs in Tennessee that you frequently use:

Memphis:	Jack Carley Causeway	\square	Riverport Rd	\square	Spottswood Ave $\quad \square$	
	Democrat Rd	\square	Chelsea Ave	\square	East Shelby Dr $\quad \square$	
	Southern Ave	\square	West Mallory Ave	\square	New Horn Lake Rd \square	
	Plough Blvd	\square				
Chattanooga:	Jersey Pike	\square	Airport Rd	\square	Shepherd Rd $\quad \square$	
	Manufacturers Rd	\square	Moccasin Bend Rd	\square	West 19 ${ }^{\text {th }}$ Street	\square
	River St	\square				
Knoxville:	East Magnolia Ave	\square	Middlebrook Pike	\square		
Kingsport:	Airport Access Rd	\square	Lincoln Street	\square		
Smyrna:	Sam Ridley Pkwy W	\square	Lee Victory Pkwy	\square		
Clarksville:	Hwy 76	\square	Guthrie Hwy	\square		
Portland:	Hwy 52 W	\square	Ronnie Mc Dowell Pkwy			
Nashville:	Sidco Dr	\square				
Other:						

The following questions are in relation to the road segment(s) identified above:

1. Signage or striping concerns along the segment/corridor?
Yesor No
2. Roadway or shoulder width issues along the segment/corridor? Yesor No \square
3. Adequate turning radii at some of the intersection(s)?
4. Train impediment issues along the segment/corridor?
5. Vertical clearance or weight restrictions?

Yes \square or No \square
6. Intersection turning movement issues?

Yesor No
7. Traffic accidents/safety concerns along the segment/corridor?

Yes \square or No
8. Recurring congestion along the segment/corridor?

Yesor No
9. Issues related to interacting with other vehicles, pedestrians, cyclists, and conflicting lan uses along the segment/corridor?

Yes \square or No \square
10. To move freight more efficiently how important are the following transportation factors? Critical Important Neutral Unimportan

- Infrastructure condition
- On-time delivery
- Direct/indirect cost of congestion
- Bottlenecks
- Safety and security
- Signage

11. How would you rate the transportation infrastructure along the Freight Intermodal Connectors?

	Poorly		
Inadequate	Maintained	Average	Maintaine
Mas			
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square
\square	\square	\square	\square

12. How often do you encounter the following barriers that affect freight transportation?
Never Rarely Often Alway

- Bridge/tunnel restrictions for freight
- Access to freight facility (turning lane)
- Congestion due to freight trucks
Rarel
Often
Always
- Signage and road markings
- Road geometrics
- Pavement conditions
- Traffic signals and timing
- Roadway connectivity
- Roadway capacity
- Interstate/highway accessibility
- Street lighting
- Safety features

Never

Congestion due to crashes on the road segment

- Traffic congestion during Off-peak hours
- Traffic congestion during peak period
- Truck queuing at the terminal gate

13. Pavement conditions of the road segment(s): Good $\square \quad$ Fair $\square \quad$ Poor \square

- Good condition describes a road pavement that is smooth and does not possess any potholes, bumps, or rough spots.
- Fair condition describes a road pavement that has a few and minor potholes, bumps, or rough spots, and can generally be described as mostly smooth.
- Poor condition describes a road pavement characterized by major potholes, bumps, or rough spots.

14. Are any of these features available?

- Bike lanes along the connectors
- Sidewalks along the connectors
- Pedestrian crossing features

15. In your opinion what causes traffic congestion along this road segment(s)?

Please respond with one of the following:
Too many vehicles \square, Pedestrians \& Cyclists \square, Road Geometry \square, Access Points \square.
16. Do you experience any negative environmental issues while traveling along the road segment(s) (air pollution, noise)? Yes \square or No \square
17. Rate the peak hour traffic congestion along the road segment(s)
Light \square
Moderate
Heavy
18. How often do you have to reroute to get to the freight facility?

Often \square
Rarely
\square
Never \square
19. What is the average travel time from the interstate to freight facility or vice versa?

20. What is the average traveling speed?

22. Do you have any other preferred/ alternative routes that help you get to the facility quicker? Or that help navigate from the freight facility to the interstate road?

Concerns

The following questions are in relation to the road segment(s) identified above:

1. Signage or striping concerns along the segment/corridor?
2. Roadway or shoulder width issues along the segment/corridor?
3. Adequate turning radii at some of the intersection(s)?
4. Train impediment issues along the segment/corridor?
5. Vertical clearance or weight restrictions?
6. Intersection turning movement issues?
7. Traffic accidents/safety concerns along the segment/corridor? Yes \square or No \square
Yes \square or No \square
\square Biggest issue that the drivers are currently facing is recurring congestion
\square Turning movement at intersections is also another issue of concern

Freight Efficiency Factors

10. To move freight more efficiently how important are the following transportation factors?				
	Critical	Important	Neutral	Unimportant
- Infrastructure condition	\square	\square	\square	\square
- On-time delivery	\square	\square	\square	\square
-	Directindirect cost of congestion	\square	\square	\square
-	Bottlenecks	\square	\square	\square
-	Safety and security	\square	\square	\square
-	Signage	\square	\square	\square

\square Bottlenecks were deemed to be most critical
\square Most of the respondents rated all the factors as either critical or important

Infrastructure Conditions

11. How would you rate the transportation infrastructure along the Freight Intermodal				
Connectors?				
	nadequate	Poorly Maintained	Average	Well Maintained
- Signage and road markings	\square	\square	\square	\square
- Road geometrics	\square	\square	\square	\square
Pavement conditions	\square	\square	\square	\square
- Traffic signals and timing	\square	\square	\square	\square
- Roadway connectivity	\square	\square	\square	\square
- Roadway capacity	\square	\square	\square	\square
- Interstate/highway accessibility	ty \square	\square	\square	\square
- Street lighting	\square	\square	\square	\square
- Safety features	\square	\square	\square	\square

\square Pavement condition is being poorly maintained

- 25\% of the truck drivers perceive the pavement conditions of the road segments as good

Freight Transportation Barriers

12. How often do you encounter the following barriers that affect freight transportation?				
	Never	Rarely	Often	Always
- Bridge/tunnel restrictions for freight	\square	\square	\square	\square
- Access to freight facility (turning lane)	\square	\square	\square	\square
- Congestion due to freight trucks	s \square	\square	\square	\square
- Congestion due to crashes on the road segment	\square	\square	\square	\square
- Traffic congestion during Off-peak hours	\square	\square	\square	\square
- Traffic congestion during peak period	\square	\square	\square	\square
- Truck queuing at the terminal gate	\square	\square	\square	\square

Traffic congestion during peak period is the most recurrent barrier

- 83 \% of the truck drivers reported 'often' or 'always'

Evaluation of Survey Results

- Do you experience any environmental issues while traveling along the road segment(s) (air pollution)?

Survey Summary

\square The biggest issue that the drivers are currently facing is recurring congestion along the FICs.
\square Turning movement at intersections is also another issue of concern.
\square Signage, safety, and security, bottlenecks, direct/ indirect cost of congestion, on-time delivery, and infrastructure condition are critical factors for freight efficiency
\square The absence of safety features such as bike lanes, sidewalks, and pedestrian features ought to be addressed.
\square The respondents provided the following recommendations and concerns:
a. Potholes
b. Bottlenecks
c. Clearer signs
d. Better access points

Publications Resulting from this Study

1. Chimba, D., Masindoki, E., Li, X., and Langford, C. Safety Evaluation of Freight Intermodal Connectors in Tennessee. Transportation Research Record: Journal of the Transportation Research Board (TRR), 2673(3), 237-246, 2019.
2. Jonga, T., Chimba, D, and Swai, S., Kosanovic, A. Emission estimations along first or last mile Freight Connectors. Submitted for Presentation and Publication considerations at 2020 Transportation Research Board (TRB) Annual Meeting, Paper \# 20-03608.
3. Swai, S., Chimba, D and Jonga, T ., Kosanovic, A. Reliability Measures in Bottlenecks Identification along Freight Arterial Segments. Submitted for Presentation and Publication considerations at 2020 Transportation Research Board (TRB) Annual Meeting, Paper \# 20-03934.
4. Swai, S., Chimba, D and Jonga, T ., Kosanovic, A. Operational Performance Evaluation of Freight Intermodal Connectors. Submitted for Presentation and Publication considerations at 2020 Transportation Research Board (TRB) Annual Meeting, Paper \# 20-00556.
5. Jonga, T., Chimba, D. Vehicle Emissions on Intersections along first-last mile Freight Intermodal Connectors. Published in the Proceedings of 98th Transportation Research Board (TRB) Annual Meeting, 2019. \# 19-00283.
6. Chimba, D., Masindoki, E., and Langford, C. Safety Evaluation of Freight Intermodal Connectors in Tennessee. Published in the Proceedings of $98^{\text {th }}$ Transportation Research Board (TRB) Annual Meeting, 2019. \# 19-00083.
7. Xiaoming Li., Chimba, D and Emmanuel Masindoki. The Economic and Societal Impact of Motor Vehicle Crashes on Freight Intermodal Connectors in Tennessee: A Risk Management Approach. Published in the Proceedings of Transportation Research Board (TRB) Annual Meeting, 2018. \# 17-00881.

Thank you!

Summary of Findings

Safety Analysis Summary of Findings

U Using 2012 to 2015 Crash data, the highest number of crashes was found along Jackson Ave (SR-14) connector to and from Leewood Yards - Memphis CSX, a Truck/Rail Facility in Memphis to I-40.
The second and third connector segments with highest number of crashes are also from facilities in Memphis, which are Democrat Rd (to Memphis International Airport) and Shelby Dr (Tennessee Yards - Memphis Burlington) respectively.
E. Magnolia Ave segment (to Greyhound Bus Terminal) in Knoxville has the highest number of fatal and incapacitating injury crashes combined.

- The top FICs connectors that exceeded critical total crash rates include Armory Ave to and from Radnor Yards in Nashville CSX, Western Ave to and from Pipeline facility in Knoxville, Riverside Blvd to and from President's Island in Memphis, Shelby Dr to and from Tennessee Yards - Memphis Burlington and East Parkway S to and from Forrest Yards Memphis Norfolk Southern.

Operational Analysis Summary of Findings

- Intersection with Shelby Dr to and from Tennessee Yards - Memphis Burlington and Jersey Pike/SR-153, an intersection along pipeline connector in Hamilton County recorded the highest AM delay
- Intersections with Winchester Rd, Airways Blvd and Plough Blvd which are connectors to and from Memphis International Airport recorded the highest PM delays.
\square The intersection with Lincoln Street to and from truck-rail connector segment in Sullivan County and E. Magnolia Ave and North Cherry St segment to and from Greyhound Bus Terminal in Knoxville had the lowest delays.
It was observed that intersection delays varied randomly for different type of connectors without specific pattern related to the type of intermodal connector.
Reliability Measures for Fluidity analysis was used to identify Bottlenecks and related delay costs for some connector segments.
\square The top three segments are Democratic Rd to and from Memphis International Airport has the highest delay cost followed by Ed Shouse Dr to and from Colonial \& Plantation Pipeline in Knoxville, E. Magnolia Ave segment to and from Greyhound Bus Terminal in Knoxville.
\square The segment with the lowest delay cost is West 19th St to and from Southern Foundry Supply, a Port Terminal connector in Chattanooga

Safety Modeling Summary of Findings

\square To understand influence of evaluated variables on FICs crash occurrence, the sign and magnitude of respective variable coefficient was observed
-Three variables were found with negative coefficients meaning their increase or presence tends to decrease number of crashes along FICs connectors; number of lanes, presence of two way left turn lane (TWLTL) and the presence of outside shoulder. This means FICs segment are safer at segments with multilane, TWLTL medians and in the presence of outer shoulder
QVariables with positive coefficient including AADT, signal density, access density, presence of Curb and Gutter meaning FICs segment are more hazardous with increase/presence of these variables.

Emission Analysis Summary of Findings

\square The FICS connectors which generated the highest amount of emission are those to Memphis International Airport followed by those to Colonial \& Plantation Pipeline Co, Tennessee YardsMemphis Burlington, Johnston Yards-Memphis Illinois Central, Leewoods Yards-Memphis CSX in that order respectively.
\square The FICS connectors which generated the highest amount of NOx emission are those to Tennessee Yards-Memphis Burlington, Memphis International Airport and President's Island-Memphis.
\square The FICS connectors which generated the highest amount of PM2.5 emission are those to Tennessee Yards-Memphis Burlington, President's Island-Memphis, Johnston YardsMemphis Illinois Central, and Memphis International Airport.

Questionnaire Survey Summary of Findings

\square The questionnaire survey showed the biggest issue that the drivers are currently facing is recurring congestion along the FICs.
Turning movement at intersections is also another issue of concern.
\square Signage, safety, and security, bottlenecks, direct/ indirect cost of congestion, on-time delivery, and infrastructure condition are critical factors for freight efficiency
\square The absence of safety features such as bike lanes, sidewalks, and pedestrian features ought to be addressed.
The respondents provided the following recommendations and concerns:
a. Potholes
b. Bottlenecks
c. Clearer signs
d. Better access points

