Understanding the Role of Faster Emergency Medical Service Response in Survival Time of Pedestrians in Fatal Crashes

Iman Mahdinia PhD Candidate

TENNESSEE SECTION INSTITUTE OF TRANSPORTATION ENGINEERS

Mahdinia, I., Mohammadnazar, A., & Khattak, A. J. (2021). Understanding the Role of Faster Emergency Medical Service Response in Survival Time of Pedestrians in Fatal Crashes. Under review in the journal of Accident Analysis & Prevention.

Introduction

Are all Pedestrian fatal crashes the same in terms of severity?

- Fatality of vulnerable road users has been rising
- Pedestrians have been recognized as the most at-risk road users
- Instant death is substantially more severe than death caused by a crash several days afterward

In this research:

- ➢ Instead of homogenizing all fatal pedestrian crashes as the same
- Considering pedestrians time-to-death as a timeline
- ▶ Ranging from instant death to death within 30 days of the crash
- Data: Fatality Analysis Reporting System dataset (FARS) from 2015-2018
- Spaciotemporal association of EMS response time with pedestrian survival time

Crash Time

Arrival time of EMS personnel

* EMS response time is defined as the difference between crash time and the arrival time of EMS personnel

Framework

In depth analysis of factors affecting pedestrians time-to-death involved in fatal-injury crashes using a sophisticated methodology.

Findings

Variables (N = 4983)	β	β Meanβ P-value		Εχρ(β)
Constant	9.400	8.605	0.000	12088.38
Logarithm of EMS	-0.858	-0.711	0.013	0.424
Residual	1.151	0.962	0.001	3.161
Pedestrian Characteristics				
Age (base: <30)		0.004		0.000
50-60 > 60	-0.404	-0.204	0.000	0.668
Sonder (hass: Male) Female	-0.287	-0.224	0.022	0.751
	-0.390	-0.320	0.000	0.677
Yes	0.201	0 070	0.000	0.676
Linknown	-0.391	-0.272	0.002	0.076
Behavior (base: Crossing vehicle turning)	-0.111	-0.256	0.266	0.895
Denavior (base. crossing, venicle turning)				
Working or playing in roadway	-1.633	-0.909	0.000	0.195
Walking/running along roadway	-1.322	-0.976	0.000	0.267
Dash/dart-out	-0.992	-0.743	0.000	0.371
Crossing, vehicle not turning	-1.319	-1.045	0.000	0.267
Crossing expressway	-1.329	-1.218	0.000	0.265
Waiting to cross	-1.694	-1.278	0.000	0.184
Others	-1.395	-0.124	0.000	0.248
Roadway Characteristics				
Speed limit (base: <=30 mph)				
35-40	-0.420	-0.451	0.001	0.657
>=45	-1.115	-1.299	0.000	0.328
Crash Locations (base: At intersections)				
Not at intersections	-0.215	-0.270	0.038	0.807
Unknown	-0.414	-0.201	0.560	0.661
Functional Classification (base: Local and collector)				
Interstate	-0.592	-0.382	0.018	0.553
Arterial	-0.441	-0.224	0.688	0.643
Driver Characteristics				
Rit and Run (base. No) Yes	-0.417	-0.270	0.000	0.659
Environmental Characteristics	-0.342	-0.290	0.048	0.710
Visibility (base: Good) Poor		0.240		0 709
Crash Time (base: off-peak midday) Other	-0.346	-0.349	0.004	0.700
Sigma	-0.200	-0.320	0.021	12 999
L og-L ikelibood	-10991 36	4.100 -10939 A	0.000	13.000
AIC	22034.73	21928.8		
R-squared	0.067	0.114		
Adjusted R-squared	0.063	0.110		
Pseudo R-squared	0.035	0.040		

Y: Pedestrian survival time involved in a fatal crash

Findings

Mean of EMS Response Time in each state

Spatiotemporal variation of the coefficient of EMS response time

Scatterplot of pedestrian time-to-death vs. EMS response time

Conclusion

- EMS response time, speeding, and pedestrian crossing behaviors are the most important factors affecting pedestrian survival time in fatal crashes
- A delay in EMS response time significantly decreases pedestrian survival time in fatal injury crashes
- Crossing expressways, waiting to cross along roadways, and working or playing in roadways are relatively more detrimental and lethal pedestrian behaviors
- Associations of variables with pedestrian survival time substantially vary across space and over time, due to the unobserved heterogeneity
- The findings of this study can provide **traffic safety practitioners** with key factors that have the potential to save pedestrian lives, specifically through **faster pedestrian crash detection and emergency response**. Importantly, results from the proposed model deliver valuable information about **which areas and at what time interventions** that may be needed regarding the role of EMS response time or other studied factors.

Thank you!

