Multiresolution Platform to Verify and Validate Cooperative Driving Automation Functionalities in Contested Environments

Arman Sargolzaei, PhD Director of Resilient, Autonomous, Networked Control Systems Lab Assistant Professor of Mechanical Engineering Tennessee Technological University <u>asargolzaei@tntech.edu</u> www.rancs-lab.com

Introduction

• Education:

- MSc: Aerospace Engineering, University of Florida, 2019
- PhD: Mechanical Engineering, University of Florida, 2020
- BSc, MSc, PhD: Electrical Engineering-control systems, 2010, 2012, 2015
- Current position:

Assistant Professor of Mechanical Engineering

• Research Interests:

Security of Networked Control Systems; Testing and verification of Connected and Autonomous Vehicles; Security of Multi-agent Systems

- **Previous positions:**
 - Assistant Professor of Electrical and Computer Engineering, Florida Polytechnic University
 - Director of Advance Mobility Institute, Florida Polytechnic University
 - Research Assistant Professor, Florida International University
 - System Development Engineer, PLC International Inc

RANCS Team

Dr. Arman Sargolzaei

Dr. Shirin Noei

James Holland Jonas Cunningham-Rush

Miguel Fuentes

Nathan Gardner

Nathan Gardner

Introduction

- According to a report of the National Highway Traffic Safety Administration (NHTSA), **94** percent of the **37,461** traffic fatalities in 2016 were due to human error.
- Autonomous Vehicles (AVs), including marine and robots, have the potential to add great value, but to be effective, they must be shown to be **safe and secure**.

Autonomous Vehicles

- Despite all of AV's advantages, the major barrier for wide-scale adoption of AVs is the test and verification regime to safety and security.
- To address this barrier, a process, which builds an engineering argument for assuring safety and security, must be developed.

Scenario Testing and Verification

- How to generate interesting edge cases?
- Do we need to test for all possible cases?
- Can we eliminate similar scenarios using equivalent classes theory?
- Can we do the coverage analysis?

• Scenario Testing and Verification

How can we systematically learn from real-world crashes?

> Can we test future CAVs based on real-world crashes?

Environmental and sensor testing

How the perception of CAV performs under electromagnetic interferences?

How to test CAVs and their perception under different weather conditions?

• Language of Driving

Do we have a language for driving?
How human in the loop can be tested?
How ethical are CAVs?

Security Challenges

- Cyber-physical attack
- How to test the security of CAVs in critical situations?
- How to test the stability of CAVs under faults, failures, and cyber-physical attacks?

Challenges:

- Cost of redesign and collaboration problem
- Random attacks
- Resource constraints
- Communication protocols are not well designed
- Intelligent attacks

Testing Environments

Mixed Reality Platform

Resilient Autonomous Networked Control Systems (RANCS) Lab, Director: Dr. Arman Sargolzaei, sargolzaei@tntech.edu

Scenario Generation

- Game engines and random scenario generation (coverage and equivalent Classes)
- Scenario abstraction from real life
- Digital Twin Environment

		Florida	4:36:00 PM Driver Brown was drivit Yes	Highway	
	3/23/2018 Mountain View	California	9:27:00 AM Tesla Model X slammed Yes	Highway	
	5/11/2018 Salt Lake city	Utah	6:30:00 PM A Tesla sedan with a serVes	Highway	- 6
	5/17/2018 Jerusalem	Israel	Intel/Mobileye held a mYes	Four-way Intersection	3
	5/4/2018 Chandler	Arizona	12:00:00 PM On Friday, May 4, 2018 Yes	Four-way Intersection	4
	5/29/2018 Laguna beach	California	11:07:00 AM A Tesla sedan in Autopi Yes	Two-way road	2
1 Google	11/2/2015 Mountain View	California	2:30:00 PM A Google Lexus model a Yes	T-intersection	1
3 Google	10/26/2016 Mountain View	California	10:27:00 AM A Google prototype aut Yes	Four-way Intersection	4
1 Google	9/7/2016 Palo Alto	California	6:47:00 PM A Google prototype aut Yes	T-intersection	1
1 Google	9/14/2016 Los Altos	California	3:06:00 PM A Google prototype veh No	T-intersection	4
1 Grouple	9/20/2016 Mountain View	California	A Google Lexus-model a Yes	Four-way Intersection	1
3 Google	9/23/2016 Mountain View	California	11:58:00 AM A Google Lexus-model ¿Yes	4-way intersection	3
i Google	8/8/2016 Mountain View	California	A Google prototype veh Yes	4-way intersection	3
5 Google	8/9/2016 Chandler	Arizona	A Google Lexus-model \No	4-way intersection	5
1 Google	8/16/2016 Chandler	Arizona	A Google Lexus-model No	Four way-intersection	5
7 Google	8/16/2016 Mountain View	California	A Google prototype veh Yes	4-way intersection	2
1 Google	8/22/2016 Chandler	Arizona	A Google Lexus-model a Yes	T-intersection	2
1 Google	8/20/2015 Mountain View	California	9:36:00 AM A Google Lexus autonor No	T-intersection	3
	7/15/2016 Los Altos	California	3:26:00 PM A Google prototype aut Yes	4-way intersection	3
	7/1/2015 Mountain View	California	5:16:00 PM A Google Lexus model a Yes	4-way intersection	3
	6/6/2016 Austin	Texas	A Google prototype aut Yes	4-way intersection	3
	6/15/2016 Austin	Texas	A Google prototype aut Yes	4-way intersection	3
	6/4/2015 Mountain View	California	8/54/00 AM A Google Lexus model a Yes	4-way intersection	3
	6/18/2015 Mountain View	California	11:15:00 AM A Google Lexus model a Yes	d-way intersection	-2
	5/4/2016 Moontain View	California	9:45:00 PM A Gongle self-driving pr No	4-way intersection	

November 13, 2021

Scenario abstraction from real crashes

★ Time-Delay Switch (TDS) Attack:
$$τ_i \ge 0$$
 and $β_i = 0$ for t ≥ 0

The proposed model covers weather effects on sensors and vehicle communication.

Attack and Fault Generation

CAV under Attack

Autonomous Race Vehicle

Our Research:

- Testing and Verification of CAV
- Testing V2P interactions
- Testing and training human and CAV interactions
- Digital Twin and Mixed Reality Platform
- Drive by Wire Table for Racing Vehicle
- Autonomous Racing Vehicle
- Autonomous Golf Cart
- Vehicle Simulator

Towards Autonomoy

Arman Sargolzaei, PhD Assistant Professor of Mechanical Engineering Tennessee Technological University <u>asargolzaei@tntech.edu</u> <u>www.rancs-lab.com</u>