TS ITE & ITS TN 2021 Fall Meeting

Cooperative Driving Automation Verification

Shirin Noei

Research Assistant Professor Center for Energy Systems Research Tennessee Tech University

"Where research is put into practice."

27th Oct 2021

Driving Automation

Conventional vehicles

- Level 0: driver \rightarrow dynamics driving tasks;
- Level 1: driver assistant systems \rightarrow lateral or longitudinal;
- Level 2: driver assistant systems \rightarrow lateral & longitudinal.

Vehicles dedicated to automated driving systems

- Levels 3—5: automated driving systems \rightarrow dynamics driving tasks.

Cooperative Driving Automation

Vehicles equipped with cooperative automated driving systems

- Levels 3-5 driving automation,
- External communications.
- Classes
 - Class A: sharing intent,
 - Class B: sharing status,
 - Class C: seeking agreement,
 - Class D: prescriptive.
- Benefits
 - Dynamic driving task performance,
 - Safety,
 - Traffic operations.

Conventional Simulation Tools

Vehicle dynamics simulation tools

- E.g., CarMaker, CarSim;
- Mainly used for verification and validation purposes on a small scale;
- Can simulate longitudinal, lateral, and vertical dynamics;
- Compute-intensive but accurate.

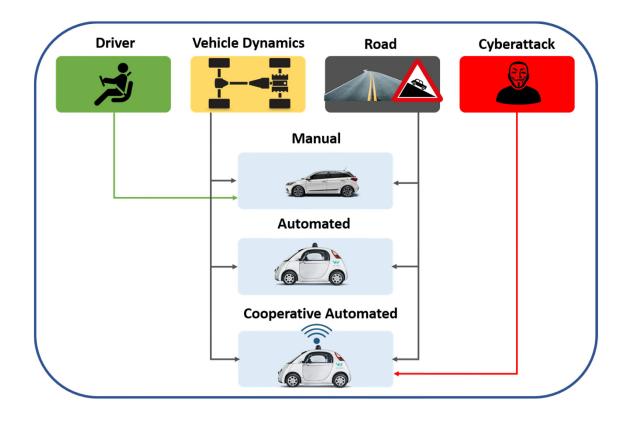
• Traffic microsimulation tools

- E.g., Vissim, Aimsun;
- Mainly used for verification purposes on a large scale;
- Can simulate vehicle-following, lane-changing, and gap-acceptance behaviors;
- Compensate accuracy for simulation speed.

Vissim and CarMaker co-simulation

Problem Statement

- Verification scale,
- Verification resolution,
- Vehicle powertrain,
- Maximum acceleration & maximum deceleration,
 - sensitive to vehicle model, grade, pavement conditions, and traffic conditions.
- Longitudinal control variables,
 - sensitive to driver characteristics, vehicle model, grade, pavement conditions, operating mode, malicious fault magnitude, and traffic conditions.
- Contested environments.



Contested Environments

- Noise, natural fault, malicious fault;
- Minor faults may lead to malfunction or even failure if not responded promptly;
- A single cyberattack can cost an average OEM \$1.6 billion a year;
- From 2010 to 2021, 367 cyberattacks on connected vehicles have been reported;
- Common cyberattacks on connected vehicles
 - Spoofing
 - Data falsification
 - Replay
 - Denial-of-service

Our Proposed Simulation Tool

Modules (I)

• Driver

- 10 driver types,
- speed multiplier, acceleration multiplier, deceleration multiplier, % included in traffic.

• Vehicle

- 14 vehicle model,
- torque map, drag coefficient, width, height, weight, wheelbase length, wheel radius, differential gear ratio, drive axle slippage, drivetrain, efficiency, transmission gear ratio, shift up speeds, shift down speeds, % included in traffic,
- vehicle generation,
- reference speed profiles,
- vehicle dynamics.

Modules (II)

• Road

- any desired freeway segment,
- grade, road adhesion coefficient, free-flow speed.

• Cyberattack

- 3 malicious fault magnitudes,
- % injected on traffic.

• Operating mode

- manual, automated, cooperative automated,
- % included in traffic.

Longitudinal Movement

Manual mode

- Improved intelligent driver model.

• Automated mode

- when a vehicle dedicated to automated driving systems approaches a vehicle, or a vehicle equipped with cooperative automated driving systems approaches a vehicle not equipped with cooperative automated driving systems;
- similar to ACC.

Cooperative automated mode

- when a vehicle equipped with cooperative automated driving systems approaches another vehicle equipped with cooperative automated driving systems;
- similar to CACC.

Max. Acceleration (Normal)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - passenger cars := 1.6 × trucks.
- Sensitive to speed.

Max. Deceleration (Normal)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - passenger cars := 1.2 × trucks.
- Sensitive to speed.

Min. Safe Distance Gap (Normal)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - trucks := 2.6 × passenger cars.
- Sensitive to speed.
 - high speeds := $5.4 \times low$ speeds.

Min. Safe Time Gap (Normal)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - *high speeds*: trucks := 2.4 × passenger cars.
- Sensitive to speed.
 - high speeds := 1.9 × low speeds.

Acceleration Error (Contested)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - high speeds: passenger cars := 1.1 × trucks;
 - low speeds: passenger cars := 1.2 × trucks.
- Not sensitive to speed;
- Sensitive to fault magnitude.
 - $-3 \text{ ft/s}^2 := 4.0 \times 1 \text{ ft/s}^2;$
 - $-5 \text{ ft/s}^2 := 6.1 \times 1 \text{ ft/s}^2$.

Distance Gap Error (Contested)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - low speeds: passenger cars := 1.1 × trucks;
- Sensitive to speed;
- Sensitive to fault magnitude.
 - $-3 \text{ ft/s}^2 := 2.6 \times 1 \text{ ft/s}^2;$
 - $-5 \text{ ft/s}^2 := 3.8 \times 1 \text{ ft/s}^2.$

Time Gap Error (Contested)

- Sensitive to vehicle model;
- Sensitive to vehicle classification;
 - high speeds: passenger cars := 2.7 × trucks;
 - low speeds: passenger cars := 1.2 × trucks.
- Sensitive to speed;
 - low speeds := 1.4 × high speeds.
- Sensitive to fault magnitude.
 - $3 \text{ ft/s}^2 \& 5 \text{ ft/s}^2 := 1.7 \times 1 \text{ ft/s}^2$.

