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Introduction

« Congestion detection, estimation and
prediction

« Data limitation: missing value, limited
coverage
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develop and validate a network-based spatial-
temporal clustering approach that supports
the accurate detection of traffic congestion
with Waze data




Road network
(Open Street Map
road network)

43,158 nodes

47,054 edges

Data

Waze JAM reports o
for Knoxville T
(July-Sep, 2017)
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Presentation Notes
he JAM reports are predominately on highway, especially at interchanges, which makes sense since the traffic on highways and interchanges is huge, especially at peak hours. 
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Map matching algorithm

Project the data onto road

L

ST-DBSCAN
M et h O d S & Density-based clustering

Dijkstra algorithm

Short-distance finding algorithm
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Map matching algorithm

MapMacthing (D, )
maxDist = infinity
minDist =0
nearSegment = none
for each point p in dataset [
create a buffer zone " with a distance

find the segments & intersects with ¢

® Actual points

. \ & Projected paints
it leniC) == i BufferZome
continue - Distance

for each segment 5 in 5
it dfp, s] < maxDist.
minDist = dfp, s]
nearSegment = s
project p onto the segment s
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Presenter
Presentation Notes
GPS may have different kinds of errors, thus making the location data not entirely accurate 



ST-DBSCAN

e Parameters
» Distance threshold (¢)
* Time threshold (t)
e Minimum points (minPts)
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Presentation Notes
DBSCAN defines clusters by iteratively examining the neighborhood points of a point p within the neighborhood radius eps (𝜀). 



Dijkstra algorithm

g N Distance threshold (¢)
a-6 ; » Get the neighbor points
neighbor _list = . . .
whgeQi;nntempw: Wlthln dIStance

u €Q[0]
e threshold (&)

for each neighbor v of u:
if v is not visited and d[u]+e(u,v) < d[v]:
dv] = d[u]+e(u,v)
a<cal {v}
sort O in ascending order based on the distance values of the elements
if d[Q[0]] = = :
return neighor_list
else:
neighbor_list€neighbor_list | Q[0]
mark Q[0] as visited
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Presenter
Presentation Notes
instead of traversing all the road network, we control the algorithm by comparing the most lately determined shortest distance with the distance threshold 𝜀#. 
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Presentation Notes
The clustering approach shows the capability to identify the clusters with any shape and a high routing flexibility. 
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Congestion level

e The congested road
segments are mainly on
interstate highways,
especially at the
highway interchanges
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Presenter
Presentation Notes
we consider each cluster as a congestion event, and assign the congestion events to corresponding links. The link with the higher number of congestion events has a higher congested level 


Conclusion and Future work

 Demonstrate the applicability of our algorithm to real
world problems with a case study of Knoxville

e Qur approach has the capability to identify cluster with
any shape and a high routing flexibility.

e Big data application
 real-time application
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