Is detour a good choice to reduce comute delay caused by crash? A case study of I-24 smart corridor in Tennessee

TENNESSEE SECTION INSTITUTE OF TRANSPORTATION ENGINEERS

You've never been closer.

Presenter: Yangsong Gu Advisor: Dr. Lee D. Han

7/26/2023

Background

I-24 smart corridor (2018-now)

- A major route for commuters and freight between Nashville-Davidson and Murfreesboro-Rutherford
- Integrates arterial routes and freeways
- A series of improvements, e.g., ramp extension, variable speed limit, lane control signs and so on.
- Improve travel time reliability, safety, and mobility

Research Story

When a crash occurs, what should we do....

Research Data

Data

- Crash data
- Waze segment speed
- Road geometry (segment length)

Study period

- May November 2022 (six months)
- Crash spatial distribution
 - Segment between Briley Pkwy and Bell Road suffer from higher crash frequency.

Coopertown Greenbrier - 30 **Pleasant View** Ridgetop Hartsville Millersvil Goodlettsville Hendersonville shland City 25 Lakewood **Green Hill** Lebanon Number of crashes per mile Briley Pkwy Nashville Harding PI Rural Hill prings Watertowi Oak Hill 20 Bell Rd **Forest Hills** Old Hickory Rd Sam Ridley Pkwy Nolensville Lee Victory Pkwy Waldron Rd Franklin 15 Medical Center Pkwy sboro w I-840 S. Church St. Thompson's Station Old Fort Pkwy 10 Plainview Columbia 5 Map tiles by Stamen Design, CC BY 3.0 -- Map data (C) OpenStreetMap contributors

Figure. Crash Spatial Distribution

Primary data analysis

٠

٠

Figure. Travel time between Nashville and Murfreesboro

Methodology

Detour scheme:

 \rightarrow Exit the smart corridor

→Travel on a section of SR-1

 \rightarrow Re-enter smart corridor

Figure. Dynamic Travel time estimation for direct and detour route

Methodology

Figure. Travel time patterns of direct and detour routes

 Table 1 Detour scenarios determined by detour efficiency.

Detour efficiency (DE)		Criterion	Comments	Possible Cases
	Scenario 1	DE>5%	Detour is strongly suggested	Case 1
~Percent of travel time	Scenario 2	0% <de<5%< td=""><td>Detour is alternative</td><td>Case 2 and 3</td></de<5%<>	Detour is alternative	Case 2 and 3
saved.	Scenario 3	DE<0%	Detour is not suggested	Case 2, 3, and 4

Detour or not

- For each crash scenario, we calculated the probability of detour, alternative detour.
- Clustering \rightarrow Detour is NOT suggested in next one hour
 - \rightarrow Detour is suggested in next one hour

Figure. K-means clustering results.

Cluster	Centroids of cluster	Explanation		
Cluster 1	(Detour probability = 0.0133 , alternative	Detour is NOT suggested in next one hour.		
Classie 2	(Detour probability = 0.6303 , alternative			
Cluster 2	detour probability $= 0.0228$)	Delour is suggested in next one nour.		

Detour or not

Bootstrapping logistic regression

$$\ln\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_i x_i$$

Table. Descriptive statistics of variables

Continuous variable	Min	Mean	Max	Std.
Detour ratio in distance	1.51	2.66	5.97	0.98
Number of Injuries	0	0.79	8	1.04
Discrete variable	Frequency (Yes)		Frequency (No)	
Detour choice (outcome)	51		409	
Crash occurs in peak hours	324		136	
Crash occurs in HELP patrol area	279		181	
Crash on roadway	371		89	
	10			

1. Total number of observations is 460.

2. Detour ratio is the ratio of detour distance to direct distance.

3. Peak hours refer to 6-10 and 15-19 on weekdays, rest are non-peak hours.

Results

- Higher number of injuries, the more likelihood ٠ of making a detour.
- Crash in peak hours, staying on I-24 seems to be a better choice
- Crash in HELP patrol areas, detour is not suggested.
- Detour is suggested when travel lanes are blocked.
- The larger ratio of detour distance to direct distance, .

Intercept

Crash occurs in peak hours

Detour ratio in distance

Crash on roadway

Crash occurs in HELP patrol area

The less likelihood of taking a detour

-0.6794

-0.5601

1.3649

-0.7891

-0.6801

-0.5609

1.3640

-0.7895

-0.6787

-0.5594

1.3658

-0.7886

TENNESSEE	Т
KNOXVILLE I	

-49.3%

-42.9%

291.5%

-54.6%

Future study

- Consider local streets for detour route choice
- Consider the emission of detour vs. direct route
- Consider the comfort and cost of detour vs. direct route.

Thank you!

Yangsong Gu

ygu17@vols.utk.edu

Special thanks to TDOT for continued support, and all organizers of this TSITE meeting!

